17 resultados para environmental fate

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to characterize the degradation products of Irgarol 1051(2-methylthio-4-tertbutylamino-6-cyclopropylamino- s-triazine), a compound recently developed for use as an antifouling agent on boat hulls. The photolytic fate of this compound in different natural waters will be used in the development of a monitoring program designed to survey the occurrence of this compound and its degradation products in South Florida marinas, the Miami River and surrounding coastal areas. ^ The transformation of Irgarol 1051 and degradation rate constants were characterized in a photo-reactor under simulated natural conditions. The degradation pathway in the UVB-UVA region (300nm to 350nm) closely resembled the transformations under natural conditions in the pond, showing that both direct photolysis and the presence of natural sensitizers play an important role in the abiotic transformation of this compound. Irgarol 1051 has an average environmental half-life of 10 days in surface waters. Average concentrations from samples around Biscayne Bay and the Miami River increased from 1–5 ng/L during 1999 and increased to between 28 and 38 ng/L in 2001, respectively. Irgarol concentrations showed a strong correlation with concentrations of its major transformation product, M1, from samples collected as part of the study ([M1]/[Irgarol] = 0.247, R2 = 0.9165, n = 125). ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contaminants of emerging concern (CECs) are continuously being released into the environment mainly because of their incomplete removal in the sewage treatment plants (STPs). The CECs selected for the study include antibiotics (macrolides, sulfonamides and ciprofloxacin), sucralose (an artificial sweetener) and dioctyl sulfosuccinate (DOSS, chemical dispersant used in the Deepwater Horizon oil spill). After being discharged into waterways from STPs, photo degradation is a key factor in dictating the environmental fate of antibiotics and sucralose. Photodegradation efficiency depends on many factors such as pH of the matrix, matrix composition, light source and structure of the molecule. These factors exert either synergistic or antagonistic effects in the environment and thus experiments with isolated factors may not yield the same results as the natural environmental processes. Hence in the current study photodegradation of 13 CECs (antibiotics, sucralose and dicotyl sulfosuccinate) were evaluated using natural water matrices with varying composition (deionized water, fresh water and salt water) as well as radiation of different wavelengths (254 nm, 350 nm and simulated solar radiation) in order to mimic natural processes. As expected the contribution of each factor on the overall rate of photodegradation is contaminant specific, for example under similar conditions, the rate in natural waters compared to pure water was enhanced for antibiotics (2-11 fold), significantly reduced for sucralose (no degradation seen in natural waters) and similar in both media for DOSS. In general, it was observed that the studied compounds degraded faster at 254 nm, while when using a simulated sunlight radiation the rate of photolysis of DOSS increased and the rates for antibiotics decreased in comparison to the 350 nm radiation. The photo stability of the studied CECs followed the order sucralose > DOSS > macrolides > sulfonamides > ciprofloxacin and a positive relationship was observed between photo stability and their ubiquitous presence in natural aquatic matrices. An online LC-MS/MS method was developed and validated for sucralose and further applied to reclaimed waters (n =56) and drinking waters (n = 43) from South Florida. Sucralose was detected in reclaimed waters with concentrations reaching up to 18 μg/L. High frequency of detection (> 80%) in drinking waters indicate contamination of ground waters in South Florida by anthropogenic activity.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contaminants of emerging concern (CECs) are continuously being released into the environment mainly because of their incomplete removal in the sewage treatment plants (STPs). The CECs selected for the study include antibiotics (macrolides, sulfonamides and ciprofloxacin), sucralose (an artificial sweetener) and dioctyl sulfosuccinate (DOSS, chemical dispersant used in the Deepwater Horizon oil spill). After being discharged into waterways from STPs, photo degradation is a key factor in dictating the environmental fate of antibiotics and sucralose. Photodegradation efficiency depends on many factors such as pH of the matrix, matrix composition, light source and structure of the molecule. These factors exert either synergistic or antagonistic effects in the environment and thus experiments with isolated factors may not yield the same results as the natural environmental processes. Hence in the current study photodegradation of 13 CECs (antibiotics, sucralose and dicotyl sulfosuccinate) were evaluated using natural water matrices with varying composition (deionized water, fresh water and salt water) as well as radiation of different wavelengths (254 nm, 350 nm and simulated solar radiation) in order to mimic natural processes. As expected the contribution of each factor on the overall rate of photodegradation is contaminant specific, for example under similar conditions, the rate in natural waters compared to pure water was enhanced for antibiotics (2-11 fold), significantly reduced for sucralose (no degradation seen in natural waters) and similar in both media for DOSS. In general, it was observed that the studied compounds degraded faster at 254 nm, while when using a simulated sunlight radiation the rate of photolysis of DOSS increased and the rates for antibiotics decreased in comparison to the 350 nm radiation. The photo stability of the studied CECs followed the order sucralose > DOSS > macrolides > sulfonamides > ciprofloxacin and a positive relationship was observed between photo stability and their ubiquitous presence in natural aquatic matrices. An online LC-MS/MS method was developed and validated for sucralose and further applied to reclaimed waters (n =56) and drinking waters (n = 43) from South Florida. Sucralose was detected in reclaimed waters with concentrations reaching up to 18 µg/L. High frequency of detection (> 80%) in drinking waters indicate contamination of ground waters in South Florida by anthropogenic activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increased occurrence of cyanobacteria (blue-green algae) blooms and the production of associated cyanotoxins have presented a threat to drinking water sources. Among the most common types of cyanotoxins found in potable water are microcystins (MCs), a family of cyclic heptapeptides containing substrates. MCs are strongly hepatotoxic and known to initiate tumor promoting activity. The presence of sub-lethal doses of MCs in drinking water is implicated as one of the key risk factors for an unusually high occurrence of primary liver cancer. ^ A variety of traditional water treatment methods have been attempted for the removal of cyanotoxins, but with limited success. Advanced Oxidation Technologies (AOTs) are attractive alternatives to traditional water treatments. We have demonstrated ultrasonic irradiation and UV/H2O2 lead to the degradation of cyanotoxins in drinking water. These studies demonstrate AOTs can effectively degrade MCs and their associated toxicity is dramatically reduced. We have conducted detailed studies of different degradation pathways of MCs and conclude that the hydroxyl radical is responsible for a significant fraction of the observed degradation. Results indicate preliminary products of the sonolysis of MCs are due to the hydroxyl radical attack on the benzene ring and substitution and cleavage of the diene of the Adda peptide residue. AOTs are attractive methods for treatment of cyanotoxins in potable water supplies. ^ The photochemical transformation of MCs is important in the environmental degradation of MCs. Previous studies implicated singlet oxygen as a primary oxidant in the photochemical transformation of MCs. Our results indicate that singlet oxygen predominantly leads to degradation of the phycocyanin, pigments of blue green algae, hence reducing the degradation of MCs. The predominant process involves isomerization of the diene (6E to 6Z) in the Adda side chain via photosensitized isomerization involving the photoexcited phycocyanin. Our results indicate that photosensitized processes play a key role in the environmental fate and elimination of MCs in the natural waters. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flocculent materials (floc), in aquatic systems usually consist of a non-consolidated layer of biogenic, detrital material relatively rich in organic matter which represents an important food-web component for invertebrates and fish. Thus, variations in its composition could impact food webs and change faunal structure. Transport, remineralization rates and deposition of floc may also be important factors in soil/sediment formation. In spite of its relevance and sensitivity to external factors, few chemical studies have been carried out on the biogeochemistry of floc material. In this study, we focused on the molecular characterization of the flocculent organic matter (OM), the assessment of its origin and its environmental fate at five stations along a freshwater to marine ecotone, namely the Taylor Slough, Everglades National Park (ENP), Florida. To tackle this issue, suspended, unconsolidated, detrital floc samples, soils/sediments and plants were analyzed for bulk properties, biomarkers and pigments. Both geochemical proxies and biomass-specific biomarkers were used to assess OM sources and transformations. Our results show that the detrital organic matter of the flocculent material is largely regulated by local vegetation inputs, ranging from periphyton, emergent and submerged plants and terrestrial plants such as mangroves, with molecular evidence of different degrees of diagenetic reworking, including fungal activity. Evidence is presented for both hydrodynamic transport of floc materials, and incorporation of floc OM into soils/sediments. However, some molecular parameters showed a decoupling between floc and underlying soil/sediment OM, suggesting that physical transport, incorporation and degradation/remineralization of OM in floc may be controlled by a combination of a variety of complex biogeochemical variables including hydrodynamic transport, hydroperiod characteristics, primary productivity, nutrient availability, and OM quality among others. Further investigations are needed to better understand the ecological role of floc in freshwater and coastal wetlands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Everglades are undergoing the world largest wetland restoration project with the aim of returning this system to hydrological conditions in place prior to anthropogenic modifications. Therefore, it is essential to know what these pristine conditions were. In this work, molecular marker (biomarker) distributions and carbon stable isotopic signatures in sediment samples were employed to assess historical environmental changes in Florida Bay over approximately the last 4000 years. Two biomarkers of terrestrial plants, particularly for mangroves (taraxerol and C29 n-alkane), combined with two seagrass proxies (the Paq and the C25/C 27 n-alkan-2-one ratio) revealed a sedimentary environmental shift from freshwater marshes to mangrove swamps and then to seagrass dominated marine ecosystems, likely as a result of sea-level rise in Florida Bay since the Holocene. The maximum values for the Paq and the C 25/C27 n-alkan-2-ones occurred during the 20th century, suggesting that the greatest abundance of seagrass cover is a recent rather than a historical, long-term phenomenon. The greater oscillation in frequency and amplitude for the biomarkers after 1900 potentially reflects an ecosystem under increasing anthropogenic stress. Several algal biomarkers such as C20 highly branched isoprenoids (HBIs), C 25 HBIs and dinosterol indicative of cyanobacteria, diatom and dinoflagellate organic matter inputs respectively, increased dramatically in the latter part of the 20th century and were attributed to recent anthropogenic changes in Florida Bay. ^ The highlight of this work is the development of HBIs as paleo-proxies. As biomarkers of diatoms, the C25 HBIs in the core from the central bay displayed the highest concentration at mid depth, reflecting strong historical inputs of diatom-derived sedimentary OM during that period. In fact, the depth profile of C25 HBIs coincided quite well with historical variations in diatom abundance and variations in diatom species composition in central Florida Bay based on the results of fossil diatom species analysis by microscopy. This study provides evidence that some C25 HBIs can be applied as biomarkers for certain diatom inputs in paleoenvironmental studies. The sources of C20 and C30 HBIs and their potential applicability as paleo-proxies were also investigated and their sources assessed based on their δ13C distributions. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. ^ The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. ^ Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permeable reactive barriers (PRB) are constructed from soil solid amendments to support the growth of bacteria that are capable of degrading organic contaminants. The objective of this study was to identify low-cost soil solid amendments that could retard the movement of trichloroethylene (TCE) while serving as long-lived carbon sources to foster its biodegradation in shallow groundwater through the use of a PRB. The natural amendments high in organic carbon content such as eucalyptus mulch, compost, wetland peat, organic humus were compared based on their geophysical characteristics, such as pHw, porosity and total organic carbon (TOC), and as well as TCE sorption potentials. The pHw values were within neutral range except for pine bark mulch and wetland peat. All other geophysical characteristics of the amendments showed suitability for use in a PRB. While the Freundlich model showed better fit for compost and pine bark mulch, the linear sorption model was adequate for eucalyptus mulch, wetland peat and Everglades muck within the concentration range studied (0.2-0.8 mg/L TCE). According to these results, two composts and eucalyptus mulch were selected for laboratory column experiments to evaluate their effectiveness at creating and maintaining conditions suitable for TCE anaerobic dechlorination. The columns were monitored for pH, ORP, TCE degradation, longevity of nutrients and soluble TOC to support TCE dechlorination. Native bacteria in the columns had the ability to convert TCE to DCEs; however, the inoculation with the TCE-degrading culture greatly increased the rate of biodegradation. This caused a significant increase in by-product concentration, mostly in the form of DCEs and VC followed by a slow degradation to ethylene. Of the tested amendments eucalyptus mulch was the most effective at supporting the TCE dechlorination. The experimental results of TCE sequential dechlorination took place in eucalyptus mulch and commercial compost from Savannah River Site columns were then simulated using the Hydrus-1D model. The simulations showed good fit with the experimental data. The results suggested that sorption and degradation were the dominant fate and transport mechanisms for TCE and DCEs in the column, supporting the use of these amendments in a permeable reactive barrier to remediate the TCE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mercury (Hg) contamination problem in the United Sates has been an important issue due to its potential threat to human and ecological health. This thesis presents a study of two Hg-contaminated sites along the East Fork Poplar Creek (EFPC) at Oak Ridge. The top soils from the terrestrial areas, along with the soils from three vertical soil horizons at the EFPC bank were sampled and analyzed for total-Hg (THg), methyl-Hg, total-organic-carbon (TOC), and pH. The stream bank soils were also analyzed for the stable-Hg-isotopes (198Hg, 199Hg, 200Hg, 201Hg, and 202Hg). Furthermore, some of the soil samples (n=7) from the same study sites were investigated for phytoavailability of mercury as measured by degree of Hg translocation in aboveground biomass of Impatiens walleriana plants grown in the soils.^ The results showed a significant difference (p<0.001) in THg concentrations for the forest soils (42.40±4.98 mg/kg) and the grassland soils (8.71±2.30 mg/kg). The higher THg and methyl-Hg concentrations were commensurate with the higher TOC content in the soils (p<0.001). Also, the THg concentrations for the upstream site was higher (129.08±34.14 mg/kg) than the downstream site (24.31±3.47 mg/kg). The two sites also differed in their stable Hg isotope compositions (p<0.001 for δ199Hg). The stable isotope analysis indicated the increased level of mass dependent isotopic fractionation with increasing depths along the EFPC bank. The difference between the two study sites was also prominent in case of the Hg uptake by the plants, with higher Hg uptake from the upstream soils compared to that from the downstream soils. A significant correlation, r=0.93 p<0.01, was observed between the Hg uptake and the soil-THg concentrations. THg was higher in the leaves (1161.87±310.01 μg/kg) than in the flowers (206.13±55.23 μg/kg) or the stems (634.54±403.35μg/kg). ^ The level of Hg contamination increased with decreasing distance from the point source and was highly influenced by plants/microbes, soil-organic-content, and Hg-speciation. The isotopic study indicated the existence of an additional Hg source in the EFPC watershed, possibly atmospheric Hg-deposition. These findings are worth taking into account while planning any Hg remediation effort and developing Hg loading criteria as per the National Pollutant Discharge Elimination System (NPDES) Program.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Globalization is eroding the livelihoods of small farmers, a significant and vulnerable class, particularly in the developing world. The cost-price squeeze stemming from trade liberalization places farmers in a race to the bottom that leads to displacement, poverty, and environmental degradation. Scholars and activists have proposed that alternative trade initiatives offer a unique opportunity to reverse this trend by harnessing the power of the markets to reward producers of goods with embedded superior cultural, environmental, and social values. Alternative trade via certification schemes have become a de facto prescription for any location where there is a need to conciliate economic interest with conservation imperatives. Partnerships among commodity production farmers, elite manufacturers and wealthy northern consumers/activists do not necessarily have win-win outcomes. Paradoxically, the partnerships of farmers with external agencies have unexpected results. These partnerships develop into dependent relationships that become unsustainable in the absence of further transfers of capital. The institutions born of these partnerships are fragile. When these fledging institutions fail, farmers are left in the same situation that they were before the partnership, with only minor improvements to show after spending considerable amounts of social and financial capital. I hypothesize that these failures are born out of a belief in a universal understanding of sustainability. A discursive emphasis on consensus, equity and mutual benefit hides the fact that what for consumers it is a matter of choice, for producers is a matter of survival. The growth in consumers’ demand for certified products creates a race for farmers to meet these standards. My findings suggest that this race generates economically perverse effects. First, producers enter into a certification treadmill. Second, the local need for economic sustainability is ignored. Third, commodity based alternative trade schemes increase the exposure of communities to global shocks. I conclude by calling for a careful reassessment of sustainable development projects that promote certification schemes. The designers and implementers of these programs must include farmers’ agenda in the planning of these programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass inventories of total Hg (THg) and methylmercury (MeHg) and mass budgets of Hg newly deposited during the 2005 dry and wet seasons were constructed for the Everglades. As a sink for Hg, the Everglades has accumulated 914, 1138, 4931, and 7602 kg of legacy THg in its 4 management units, namely Water Conservation Area (WCA) 1, 2, 3, and the Everglades National Park (ENP), respectively, with most Hg being stored in soil. The current annual Hg inputs account only for 1−2% of the legacy Hg. Mercury transport across management units during a season amounts to 1% or less of Hg storage, except for WCA 2 where inflow inputs can contribute 4% of total MeHg storage. Mass budget suggests distinct spatiality for cycling of seasonally deposited Hg, with significantly lower THg fluxes entering water and floc in ENP than in the WCAs. Floc in WCAs can retain a considerable fraction (around 16%) of MeHg produced from the newly deposited Hg during the wet season. This work is important for evaluating the magnitude of legacy Hg contamination and for predicting the fate of new Hg in the Everglades, and provides a methodological example for large-scale studies on Hg cycling in wetlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. ^ A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The environmental niche of the spermatogonial stem cell pool is critical to ensure the continued generation of the germ cell population. To study the consequences of an aberrant testicular environment in cryptorchidism we used a mouse model with a deletion of Rxfp2 gene resulting in a high intra-abdominal testicular position. Mutant males were infertile with the gross morphology of the cryptorchid testis progressively deteriorating with age. Few spermatogonia were identifiable in 12 month old cryptorchid testes. Gene expression analysis showed no difference between mutant and control testes at postnatal day 10. In three month old males a decrease in expression of spermatogonial stem cell (SSC) markers Id4, Nanos2, and Ret was shown. The direct counting of ID4+ cells supported a significant decrease of SSCs. In contrast, the expression of Plzf, a marker for undifferentiated and differentiating spermatogonia was not reduced, and the number of PLZF+ cells in the cryptorchid testis was higher in three month old testes, but equal to control in six month old mutants. The PLZF+ cells did not show a higher rate of apoptosis in cryptorchid testis. The expression of the Sertoli cell FGF2 gene required for SSC maintenance was significantly reduced in mutant testis. Based on these findings we propose that the deregulation of somatic and germ cell genes in the cryptorchid testis, directs the SSCs towards the differentiation pathway. This leads to a depletion of the SSC pool and an increase in the number of PLZF+ spermatogonial cells, which too, eventually decreases with the exhaustion of the stem cell pool. Such a dynamic suggests that an early correction of cryptorchidism is critical for the retention of the SSC pool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An awareness of mercury (Hg) contamination in various aquatic environments around the world has increased over the past decade, mostly due to its ability to concentrate in the biota. Because the presence and distribution of Hg in aquatic systems depend on many factors (e.g., pe, pH, salinity, temperature, organic and inorganic ligands, sorbents, etc.), it is crucial to understand its fate and transport in the presence of complexing constituents and natural sorbents, under those different factors. An improved understanding of the subject will support the selection of monitoring, remediation, and restoration technologies. The coupling of equilibrium chemical reactions with transport processes in the model PHREEQC offers an advantage in simulating and predicting the fate and transport of aqueous chemical species of interest. Thus, a great variety of reactive transport problems could be addressed in aquatic systems with boundary conditions of specific interest. Nevertheless, PHREEQC lacks a comprehensive thermodynamic database for Hg. Therefore, in order to use PHREEQC to address the fate and transport of Hg in aquatic environments, it is necessary to expand its thermodynamic database, confirm it and then evaluate it in applications where potential exists for its calibration and continued validation. The objectives of this study were twofold: 1) to develop, expand, and confirm the Hg database of the hydrogeochemical PHREEQC to enhance its capability to simulate the fate of Hg species in the presence of complexing constituents and natural sorbents under different conditions of pH, redox, salinity and temperature; and 2) to apply and evaluate the new database in flow and transport scenarios, at two field test beds: Oak Ridge Reservation, Oak Ridge, TN and Everglades National Park, FL, where Hg is present and is of much concern. Overall, this research enhanced the capability of the PHREEQC model to simulate the coupling of the Hg reactions in transport conditions. It also demonstrated its usefulness when applied to field situations.